foot of the altitude of $\triangle A B M$ from M and let $A-M_{1}-B$. Prove that then $\overline{M A}>\overline{M B}$ if and only if $\overline{M_{1} A}>\overline{M_{1} B}$.
8. If M is the midpoint of $\overline{B C}$ then $\overline{A M}$ is called a median of $\triangle A B C$. Consider $\triangle A B C$ such that $\overline{A B}<\overline{A C}$. Let E, D and H denote the points in which bisector of angle, median and altitude from A intersect line $\overleftrightarrow{B C}$, respectively. Show that (a) $\measuredangle A E B<\measuredangle A E C$; (b) $\overline{B E}<\overline{C E}$; (c) we have $H-E-D$.
9. (a.) Prove that in a neutral geometry if $\triangle A B C$ is isosceles with base $\overline{B C}$ then the
following are collinear: (i) the median from A;
(ii) the bisector of $\measuredangle A$; (iii) the altitude from A;
(iv) the perpendicular bisector of $\overline{B C}$. (b.)

Conversely, in a neutral geometry prove that if any two of (i)-(iv) are collinear then the triangle is isosceles (six different cases).
10. Show that the conclusion of the Pythagorean Theorem is not valid in the Poincaré Plane by considering $\triangle A B C$ with $A(2,1), B(0, \sqrt{5})$, and $C(0,1)$. Thus the Pythagorean Theorem does not hold in every neutral geometry.

Theorem In a neutral geometry, if $\overrightarrow{B D}$ is the bisector of $\measuredangle A B C$ and if E and F are the feet of the perpendiculars from D to $\overleftrightarrow{B A}$ and $\overleftrightarrow{B C}$ then $\overline{D E} \cong \overline{D F}$.
11. Prove the above Theorem. [Th 6.4.7, p 148]

20 Circles and Their Tangent Lines

Definition. (circle with center C and radius r, chord, diameter, radius segment). If C is a point in a metric geometry $(\mathcal{S}, \mathcal{L}, d)$ and if $r>0$, then

$$
\mathcal{C}=\mathcal{C}_{r}(C)=\{P \in \mathcal{S} \mid P C=r\}
$$

is a circle with center C and radius r. If A and B are distinct points of \mathcal{C} then $\overline{A B}$ is a chord of \mathcal{C}. If the center C is a point on the chord $\overline{A B}$, then $\overline{A B}$ is a diameter of \mathcal{C}. For any $Q \in \mathcal{C}, \overline{C Q}$ is called a radius segment of \mathcal{C}.

1. Find and sketch the circle of radius 1 with center $(0,0)$ in the Euclidean Plane and in the Taxicab Plane.
[Ex 6.5.1, p150]
2. Consider $\left\{\mathbb{R}^{2}, \mathcal{L}_{E}\right\}$ with the max distance d_{s} (recall $d_{s}(P, Q)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}$ where $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ denote two points in $\left.\mathbb{R}^{2}\right)$. Sketch the circle $\mathcal{C}_{1}((0,0))$.
3. Show that $\mathcal{A}=\left\{(x, y) \in \mathbb{H} \mid x^{2}+(y-5)^{2}=16\right\}$ is the Poincare circle \mathcal{C} with center $(0,3)$ and radius $\ln 3$.
[Ex 6.5.2, p151]
Our first result tells us that in a neutral geometry the center and radius of a circle are determined by any three points on the circle.

Theorem. In a neutral geometry, let $\mathcal{C}_{1}=\mathcal{C}_{r}(C)$ and $\mathcal{C}_{2}=\mathcal{C}_{s}(D)$. If $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ contains at least three points, then $C=D$ and $r=s$. Thus, three points of a circle in a neutral geometry uniquely determine that circle.
4. Prove the above Theorem.
[Th 6.5.3, p152]
Corollary. For any circle in a neutral geometry, the perpendicular bisector of any chord contains the center.
5. If $\overline{A B}$ is a chord of a circle in a neutral geometry but is not a diameter, prove that the line through the midpoint of $\overline{A B}$ and the center of the circle is perpendicular to $\overline{A B}$.
6. Prove that a line in a neutral geometry intersects a circle at most twice.

Definition. (interior, exterior). Let \mathcal{C} be the circle with center C and radius r. The interior of \mathcal{C} is the set $\operatorname{int}(\mathcal{C})=\{P \in \mathcal{S} \mid C P<r\}$. The exterior of \mathcal{C} is the set $\operatorname{ext}(\mathcal{C})=\{P \in \mathcal{S} \mid C P>r\}$.

Theorem. If \mathcal{C} is a circle in a neutral geometry then $\operatorname{int}(\mathcal{C})$ is convex.
7. Prove the above Theorem.
[Th 6.5.5, p153]
Definition. (tangent, point of tangency). In a metric geometry, a line ℓ is a tangent to the circle \mathcal{C} if $\ell \cap \mathcal{C}$ contains exactly one point (which is called the point of tangency). ℓ is called a secant of the circle \mathcal{C} if $\ell \cap \mathcal{C}$ has exactly two points.
8. In the Taxicab Plane prove that for the circle $\mathcal{C}=\mathcal{C}_{1}((0,0))$: (a). There are exactly four points at which a tangent to \mathcal{C} exists. (b). At each point in part (a) there are infinitely many tangent lines.

Theorem. In a neutral geometry, let \mathcal{C} be a circle with center C and let $Q \in \mathcal{C}$. If t is a line through Q, then t is tangent to \mathcal{C} if and only if t is perpendicular to the radius segment $\overline{C Q}$.

9. Prove the above Theorem.

[Th 6.5.6, p154]
Corollary. (Existence and Uniqueness of Tangents). In a neutral geometry, if \mathcal{C} is a circle and $Q \in \mathcal{C}$ then there is a unique line t which is tangent to \mathcal{C} and whose point of tangency is Q.
10. Prove the above Corollary. [Cor 6.5.7, p155]

Definition. (continuous). Function $h: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $t_{0} \in \mathbb{R}$ if for every $\varepsilon>0$ there is a $\delta>0$ such that $\left|h(t)-h\left(t_{0}\right)\right| \leq \varepsilon$ if $\left|t-t_{0}\right|<\delta$.
(Thus if t is "near" t_{0} then $h(t)$ is "near" $h\left(t_{0}\right)$).
Intermediate Value Theorem. If $h:[a, b] \rightarrow \mathbb{R}$ is continuous at every $t_{0} \in[a, b]$ and if y is a number between $h(a)$ and $h(b)$ then there is a point $s \in[a, b]$ with $h(s)=y$.

21 The Two Circle Theorem

From previus lesson we know that two distinct circles in a neutral geometry intersect in at most two points. The main point of this section is to give a condition for when two circles intersect in exactly two points. This result, called the Two Circle Theorem, will follow directly from a converse of the Triangle Inequality.
Theorem. (Sloping Ladder Theorem). In a neutral geometry with right triangles $\triangle A B C$ and $\triangle D E F$ whose right angles are at C and F, if $\overline{A B} \cong \overline{D E}$ and $\overline{A C}>\overline{D F}$, then $\overline{B C}<\overline{E F}$.

1. Prove the above Theorem.
[Th 6.6.1, p160]

Theorem. Let $\overline{A B}$ and $\overline{D E}$ be two chords of the circle $\mathcal{C}=\mathcal{C}_{r}(C)$ in a neutral geometry. If $\overline{A B}$ and $\overline{D E}$ are both perpendicular to a diameter of \mathcal{C} at points P and Q with $C-P-Q$, then $D Q<A P<r$.
2. Prove the above Theorem.

Theorem. (Triangle Construction Theorem).
Let $\{\mathcal{S}, \mathcal{L}, d, m\}$ be a neutral qeometry and let a, b, c be three positive numbers such that the sum of any two is greater than the third. Then there is a triangle in \mathcal{S} whose sides have length a, b and c.

Theorem. Let r be a positive real number and let A, B, C be points in a neutral geometry such that $A C<\underset{A B}{ }$ and $\overrightarrow{A B} \perp \overrightarrow{A C}$. Then there is a point $D \in \overrightarrow{A B}$ with $C D=r$.
11. Prove the above Theorem. [Th 6.5.8, p156]

Theorem. (Line-Circle Theorem). In a neutral geometry, if a line ℓ intersects the interior of a circle \mathcal{C}, then ℓ is a secant.
12. Prove the above Theorem. [Th 6.5.9, p157]

Theorem. (External Tangent Theorem). In a neutral geometry, if \mathcal{C} is a circle and $P \in \operatorname{ext}(\mathcal{C})$, then there are exactly two lines through P tangent to \mathcal{C}.
13. Prove the above Theorem. [Th 6.5.10, p158]
14. In a neutral geometry, if \mathcal{C} is a circle with $A \in \operatorname{int}(\mathcal{C})$ and $B \in \operatorname{ext}(\mathcal{C})$, prove that $\overline{A B} \cap \mathcal{C} \neq \emptyset$.
3. Prove the above Theorem. [Th 6.6.3, p161]

Theorem. (Two Circle Theorem). In a neutral geometry, if $\mathcal{C}_{1}=\mathcal{C}_{b}(A), \mathcal{C}_{2}=\mathcal{C}_{a}(B), A B=c$, and if each of a, b, c is less than the sum of the other two, then \mathcal{C}_{1} and \mathcal{C}_{2} intersect in exactly two points, and these points are on opposite sides of $\overleftrightarrow{A B}$
4. Prove the above Theorem.

Theorem. If a protractor geometry satisfies SSS and both the Triangle Inequality and the Two Circle Theorem with the neutral hypothesis omitted, then it also satisfies SAS and is a neutral geometry.
5. Prove the above Theorem. [Th 6.6.6, p164]
6. Prove that in a neutral geometry, two circles \mathcal{C}_{1} and \mathcal{C}_{2} intersect in exactly two points if and only $\mathcal{C}_{1} \cap \operatorname{int}\left(\mathcal{C}_{2}\right) \neq \emptyset$ and $\mathcal{C}_{1} \cap \operatorname{ext}\left(\mathcal{C}_{2}\right) \neq \emptyset$.
7. Prove that in a neutral geometry a circle of radius r has a chord of length c if and only if $0<c \leq 2 r$.
8. In a neutral geometry prove that for any $s>0$ there is an equilateral triangle each of whose sides has length s.

