
foot of the altitude of 4ABM from M and let
A−M1 −B. Prove that then MA >MB if and
only if M1A >M1B.

8. If M is the midpoint of BC then AM is
called a median of 4ABC. Consider 4ABC such
that AB < AC. Let E, D and H denote the
points in which bisector of angle, median and

altitude from A intersect line
←→
BC, respectively.

Show that (a) ]AEB < ]AEC; (b) BE < CE; (c)
we have H −E −D.

9. (a.) Prove that in a neutral geometry if
4ABC is isosceles with base BC then the
following are collinear: (i) the median from A;
(ii) the bisector of ]A; (iii) the altitude from A;
(iv) the perpendicular bisector of BC. (b.)

Conversely, in a neutral geometry prove that if
any two of (i)-(iv) are collinear then the triangle
is isosceles (six different cases).

10. Show that the conclusion of the
Pythagorean Theorem is not valid in the
Poincaré Plane by considering 4ABC with
A(2,1), B(0,

√
5), and C(0,1). Thus the

Pythagorean Theorem does not hold in every
neutral geometry.

Theorem In a neutral geometry, if
−−→
BD is the

bisector of ]ABC and if E and F are the feet of
the perpendiculars from D to

←→
BA and

←→
BC then

DE �DF.

11. Prove the above Theorem. [Th 6.4.7, p 148]

20 Circles and Their Tangent Lines

Definition. (circle with center C and radius r,
chord, diameter, radius segment). If C is a point
in a metric geometry (S ,L,d) and if r > 0, then

C = Cr(C) = {P ∈ S |P C = r}

is a circle with center C and radius r. If A and B
are distinct points of C then AB is a chord of C. If
the center C is a point on the chord AB, then AB
is a diameter of C. For any Q ∈ C, CQ is called a
radius segment of C.

1. Find and sketch the circle of radius 1 with
center (0,0) in the Euclidean Plane and in the
Taxicab Plane. [Ex 6.5.1, p150]

2. Consider {R2,LE} with the max distance ds
(recall ds(P ,Q) = max{|x1 − x2|, |y1 − y2|} where
P (x1, y1) and Q(x2, y2) denote two points in R2).
Sketch the circle C1((0,0)).

3. Show that A = {(x,y) ∈H |x2 + (y − 5)2 = 16}
is the Poincaré circle C with center (0,3) and
radius ln3. [Ex 6.5.2, p151]

Our first result tells us that in a neutral
geometry the center and radius of a circle are
determined by any three points on the circle.

Theorem. In a neutral geometry, let C1 = Cr(C)
and C2 = Cs(D). If C1∩C2 contains at least three
points, then C =D and r = s. Thus, three points
of a circle in a neutral geometry uniquely
determine that circle.

4. Prove the above Theorem. [Th 6.5.3, p152]

Corollary. For any circle in a neutral geometry,
the perpendicular bisector of any chord contains
the center.

5. If AB is a chord of a circle in a neutral
geometry but is not a diameter, prove that the
line through the midpoint of AB and the center
of the circle is perpendicular to AB.

6. Prove that a line in a neutral geometry
intersects a circle at most twice.

Definition. (interior, exterior). Let C be the cir-
cle with center C and radius r. The interior of C
is the set int(C) = {P ∈ S |CP < r}. The exterior of
C is the set ext(C) = {P ∈ S |CP > r}.

Theorem. If C is a circle in a neutral geometry
then int(C) is convex.

7. Prove the above Theorem. [Th 6.5.5, p153]

Definition. (tangent, point of tangency). In a
metric geometry, a line ` is a tangent to the cir-
cle C if ` ∩C contains exactly one point (which is
called the point of tangency). ` is called a secant
of the circle C if `∩C has exactly two points.

8. In the Taxicab Plane prove that for the
circle C = C1((0,0)): (a). There are exactly four
points at which a tangent to C exists. (b). At
each point in part (a) there are infinitely many
tangent lines.
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Theorem. In a neutral geometry, let C be a
circle with center C and let Q ∈ C. If t is a line
through Q, then t is tangent to C if and only if t
is perpendicular to the radius segment CQ.

9. Prove the above Theorem. [Th 6.5.6, p154]

Corollary. (Existence and Uniqueness of
Tangents). In a neutral geometry, if C is a circle
and Q ∈ C then there is a unique line t which is
tangent to C and whose point of tangency is Q.

10. Prove the above Corollary. [Cor 6.5.7, p155]

Definition. (continuous). Function h : R→ R is
continuous at t0 ∈ R if for every ε > 0 there is a
δ > 0 such that |h(t)− h(t0)| ≤ ε if |t − t0| < δ.
(Thus if t is ”near” t0 then h(t) is ”near” h(t0)).

Intermediate Value Theorem. If h : [a,b]→ R is
continuous at every t0 ∈ [a,b] and if y is a
number between h(a) and h(b) then there is a
point s ∈ [a,b] with h(s) = y.

Theorem. Let r be a positive real number and
let A, B, C be points in a neutral geometry such

that AC < r and
−−→
AB ⊥ AC. Then there is a

point D ∈
−−→
ABwith CD = r.

11. Prove the above Theorem. [Th 6.5.8, p156]

Theorem. (Line-Circle Theorem). In a neutral
geometry, if a line ` intersects the interior of a
circle C, then ` is a secant.

12. Prove the above Theorem. [Th 6.5.9, p157]

Theorem. (External Tangent Theorem). In a
neutral geometry, if C is a circle and P ∈ ext(C),
then there are exactly two lines through P
tangent to C.

13. Prove the above Theorem. [Th 6.5.10, p158]

14. In a neutral geometry, if C is a circle with
A ∈ int(C) and B ∈ ext(C), prove that AB∩C , ∅.

21 The Two Circle Theorem

From previus lesson we know that two
distinct circles in a neutral geometry intersect in
at most two points. The main point of this
section is to give a condition for when two circles
intersect in exactly two points. This result,
called the Two Circle Theorem, will follow
directly from a converse of the Triangle
Inequality.

Theorem. (Sloping Ladder Theorem). In a
neutral geometry with right triangles 4ABC and
4DEF whose right angles are at C and F, if
AB �DE and AC > DF, then BC < EF.

1. Prove the above Theorem. [Th 6.6.1, p160]

Theorem. Let AB and DE be two chords of the
circle C = Cr(C) in a neutral geometry. If AB and
DE are both perpendicular to a diameter of C at
points P and Q with C − P −Q, then
DQ < AP < r.

2. Prove the above Theorem.

Theorem. (Triangle Construction Theorem).
Let {S ,L,d,m} be a neutral qeometry and let a,
b, c be three positive numbers such that the sum
of any two is greater than the third. Then there
is a triangle in S whose sides have length a, b
and c.

3. Prove the above Theorem. [Th 6.6.3, p161]

Theorem. (Two Circle Theorem). In a neutral
geometry, if C1 = Cb(A), C2 = Ca(B), AB = c, and
if each of a, b, c is less than the sum of the other
two, then C1 and C2 intersect in exactly two
points, and these points are on opposite sides of
←→
AB.

4. Prove the above Theorem.

Theorem. If a protractor geometry satisfies SSS
and both the Triangle Inequality and the Two
Circle Theorem with the neutral hypothesis
omitted, then it also satisfies SAS and is a
neutral geometry.

5. Prove the above Theorem. [Th 6.6.6, p164]

6. Prove that in a neutral geometry, two circles
C1 and C2intersect in exactly two points if and
only C1 ∩ int(C2) , ∅ and C1 ∩ ext(C2) , ∅.

7. Prove that in a neutral geometry a circle of
radius r has a chord of length c if and only if
0 < c ≤ 2r.

8. In a neutral geometry prove that for any
s > 0 there is an equilateral triangle each of
whose sides has length s.
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